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Prediction Problems
Consider the following problem:

Observe variables:

Predict variables: 

Noisy Image Source Image 

Received bits Code word

Symptoms Disease

Sentence Derivation

Countless applications:

Images:

Error correcting codes 

Medical diagnostics 

Text

Visible Hidden 

xh

xv



Statistical Models for Prediction



Statistical Models for Prediction

One approach:



Statistical Models for Prediction

One approach:

Assume (or learn) a model for p(xh,xv)



Statistical Models for Prediction

One approach:

Assume (or learn) a model for 

Predict the most likely hidden values

p(xh,xv)

arg max
xh

p(xh|xv)



Statistical Models for Prediction

One approach:

Assume (or learn) a model for 

Predict the most likely hidden values

p(xh,xv)

arg max
xh

p(xh|xv)

This conditional distribution often corresponds to a 
graphical model



Statistical Models for Prediction

One approach:

Assume (or learn) a model for 

Predict the most likely hidden values

p(xh,xv)

arg max
xh

p(xh|xv)

This conditional distribution often corresponds to a 
graphical model

Need to know how to find an assignment with 
maximum probability



The MAP Problem
Given a graphical model over 

f(x) =
∑

ij

θij(xi, xj)

x1, . . . , xn

Find the most likely assignment:

xi

xj
θij(xi, xj)

p(x) =
1
Z

ef(x)

arg max
x

f(x)
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MAP Approximations

Many approximation approaches:

Greedy search 

Loopy belief propagation (e.g., max product)

Linear programming relaxations

LP approaches

Provide optimality certificates 

Optimal in some cases (e.g., submodular functions)

Can be solved via message passing

x is discrete so generally NP hard 



The k-best MAP Problem



The k-best MAP Problem

Find the k best assignments for f(x)



The k-best MAP Problem

Find the k best assignments for f(x)

Denote these by x(1), . . . ,x(k)



The k-best MAP Problem

Find the k best assignments for f(x)

Denote these by 

Useful in:

x(1), . . . ,x(k)



The k-best MAP Problem

Find the k best assignments for f(x)

Denote these by 

Useful in:

Finding multiple candidate solutions when the 
energy function is not accurate (e.g., protein 
design)

x(1), . . . ,x(k)



The k-best MAP Problem

Find the k best assignments for f(x)

Denote these by 

Useful in:

Finding multiple candidate solutions when the 
energy function is not accurate (e.g., protein 
design)

As a first processing stage before applying more 
complex methods

x(1), . . . ,x(k)



The k-best MAP Problem

Find the k best assignments for f(x)

Denote these by 

Useful in:

Finding multiple candidate solutions when the 
energy function is not accurate (e.g., protein 
design)

As a first processing stage before applying more 
complex methods

Supervised learning

x(1), . . . ,x(k)



From 2 to k best

We can show that given a polynomial 
algorithm for k=2, the problem can be 
solved for any k in O(k)

Focus on k=2

Our key question: what is the LP formulation 
of the problem, and its relaxations?



Outline
LP formulation of the MAP problem

LP for 2nd best 

General (intractable) exact formulation

Tractable formulation for tree graphs

Approximations for non-tree graphs

Experiments



MAP and LP



MAP and LP
MAP: max

x
f(x)



MAP and LP
MAP: 

MAP as LP: 

max
x

f(x)



MAP and LP
MAP: 

MAP as LP: 

max
x

f(x)

max
µ∈S

µ · θ



MAP and LP
MAP: 

MAP as LP: 

S

max
x

f(x)

max
µ∈S

µ · θ



MAP and LP
MAP: 

MAP as LP: 

S

Hard

max
x

f(x)

max
µ∈S

µ · θ



MAP and LP
MAP: 

MAP as LP: 

S

Hard

Approximate 
MAP via LP

max
x

f(x)

max
µ∈S

µ · θ



MAP and LP
MAP: 

MAP as LP: 

S

Hard

Approximate 
MAP via LP

max
x

f(x)

max
µ∈S

µ · θ



MAP and LP
MAP: 

MAP as LP: 

S

Hard

Approximate 
MAP via LP

max
x

f(x)

Schlesinger, Deza & 
Laurent, Boros, 
Wainwright, 
Kolmogorov

max
µ∈S

µ · θ
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x

q(x)
∑

ij

θij(xi, xj) max
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∑

ij
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LP Formulation of MAP

Objective depends only on pairwise marginals

But only those that correspond to some distribution

This set is called the Marginal polytope ( Wainwright & Jordan) 
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LP Formulation of MAP

Objective depends only on pairwise marginals

But only those that correspond to some distribution

This set is called the Marginal polytope ( Wainwright & Jordan) 

max
q(x)

∑

x

q(x)
∑

ij

θij(xi, xj) max
q(x)

∑

ij

∑

xi,xj

qij(xi, xj)θij(xi, xj)= =

0

1
q∗(x)

x
x∗x∗ = arg max

x

∑

ij∈E

θij(xi, xj)

q(x)

max
x

∑

ij

θij(xi, xj) = max
µ∈M(G)

∑

ij

µij(xi, xj)θij(xi, xj)

See: Cut polytope (Deza, Laurent), 
Quadric polytope (Boros)

= max
µ∈M(G)

µ · θ



The Marginal Polytope

Marginal 
Polytope

M(G)
max

µ∈M(G)

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)
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The Marginal Polytope

Marginal 
Polytope

M(G)
µ

There exists a p(x) s.t. p(xi, xj) = µij(xi, xj)

max
µ∈M(G)

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

Difficult set to characterize. Easy to outer bound

The vertices have integral values and correspond to 
assignments on x



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) = max
µ∈M(G)

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) = max
µ∈M(G)

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

Exact but Hard!
M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) ≤ max
µ∈S

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

S

M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) ≤ max
µ∈S

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

If optimum is an integral vertex, MAP is 
solved

S

M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) ≤ max
µ∈S

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

If optimum is an integral vertex, MAP is 
solved

Possible outer bound: Pairwise consistency
S

M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) ≤ max
µ∈S

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

If optimum is an integral vertex, MAP is 
solved

Possible outer bound: Pairwise consistency

j!

i!

k! ∑

xi

µij(xi, xj) =
∑

xk

µjk(xj , xk)

S

M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) ≤ max
µ∈S

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

If optimum is an integral vertex, MAP is 
solved

Possible outer bound: Pairwise consistency

j!

i!

k! ∑

xi

µij(xi, xj) =
∑

xk

µjk(xj , xk)
Exact for trees

S

M(G)



Relaxing the MAP LP
max

x

∑

ij

θij(xi, xj) ≤ max
µ∈S

∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

If optimum is an integral vertex, MAP is 
solved

Possible outer bound: Pairwise consistency

j!

i!

k! ∑

xi

µij(xi, xj) =
∑

xk

µjk(xj , xk)

Efficient message passing schemes for 
solving the resulting (dual) LP

Exact for trees

S

M(G)
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The 2nd best problem and LP

max
x !=x(1)

f(x)max
x

f(x)

max
µ∈M(G)

µ · θ max
µ∈M(G,x(1))

µ · θ

x(1)

MAP 2nd best

Approximations:
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A new marginal polytope

Given an assignment z, define the Assignment 
Excluding Marginal Polytope:M(G, z)

µ

There exists a p(x) s.t. p(xi, xj) = µij(xi, xj)

and: p(z) = 0

z
M(G)

M(G, z)
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LP for the 2nd best problem

The 2nd best problem corresponds to 
the following LP:

max
x !=x(1)

f(x;θ) = max
µ∈M(G,x(1))

µ · θ

Is there a simple characterization of                  ?                     M(G, x(1))

Is it            plus one inequality?

If so, what inequality? 

M(G)

x(1)



Outline
LP formulation of the MAP problem

LP for 2nd best 

General (intractable) exact formulation

Tractable formulation for tree graphs

Approximations for non-tree graphs

Experiments
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Adding inequalities to 
Any valid inequality must separate         
from the other vertices

How about:                             (Santos 91)

RHS is n for z and          or less for 
other vertices

But: Results in fractional vertices, even 
for trees

Only an outer bound on 

∑

i

µi(zi) ≤ n− 1

z z

n− 1

M(G)

M(G, z)
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Focus on the case where G is a tree

          is given by pairwise consistency

Define: 

z

I(µ,z) =
∑

i

(1− di)µi(zi) +
∑

ij∈G

µij(zi, zj)

M(G)

Theorem: 

M(G, z) =
{
µ | µ ∈M(G), I(µ,z) ≤ 0

}

I(µ,z) ≤ 0

M(G, z)Proof...
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λ̄(xi.xj) = max
x̂:x̂i=xi,x̂j=xj

λ(x)
λ̄(zi) = 1
λ̄(xi) ≤ 0 xi "= zi

Result follows after some algebra
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The LP for 2nd best differs from the marginal 
polytope by one linear inequality constraint

The 2nd best satisfies                    so it cannot 
be any assignment

x(1)

x(2)

x(2)

M(G, x(1)) =
{
µ | µ ∈M(G), I(µ,x(1)) ≤ 0

}

I(µ,x(1)) = 0



Non tree graphs
Any graph can be converted into a junction tree

We can apply our tree result there

For a junction tree with cliques C and separators 
S, the inequality is:

∑

S∈S
(1− dS)µS(zS) +

∑

C∈C
µC(zC) ≤ 0

Specifying the marginal polytope requires a number 
of variables exponential in the tree width. Not 
practical. 



Outline
LP formulation of the MAP problem

LP for 2nd best 

General (intractable) exact formulation

Tractable formulation for tree graphs

Approximations for non-tree graphs

Experiments
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Spanning tree inequalities

Give a spanning subtree T of G define
IT (µ,z) =

∑

i

(1− di)µi(zi) +
∑

ij∈T

µij(zi, zj)

Separates z from the other vertices but 
might result in fractional vertices

z
Fractional 
vertex

IT (µ,z) ≤ 0And the constraint:

IT (µ,z) ≤ 0
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Adding all spanning trees

Can we add all spanning tree inequalities efficiently?

Yes, via a cutting plane approach:

Start with one inequality

Solve LP

If solution is fractional, find a violated tree inequality (if 
exists) and add it



Cutting Plane Algorithm



Cutting Plane Algorithm

z



Cutting Plane Algorithm

zT1



Cutting Plane Algorithm

z
µ1

T1



Cutting Plane Algorithm

z
µ1 Is there a tree 

inequality that
violates?

µ1

T1



Cutting Plane Algorithm

z
µ1 Is there a tree 

inequality that
violates?

µ1

T1

T2



Cutting Plane Algorithm

z
µ1 Is there a tree 

inequality that
violates?

µ1

T1

T2



Cutting Plane Algorithm

How do we find a violated tree inequality?

Note: Even all spanning tree inequalities 
might not suffice

z
µ1 Is there a tree 

inequality that
violates?

µ1

T1

T2
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Finding a violated spanning tree

For a given      find 

If it’s positive, add the maximizing tree

µ max
T

IT (µ,z)

How can we maximize over all trees? Note that:

IT (µ,z) =
∑

ij∈T

[
µij(zi, zj)− µi(zi)− µj(zj)

]
+

∑

i

µi(zi)

Decomposes into edge scores. Maximizing tree can 
be found using a maximum-weight-spanning-tree 
algorithm (e.g., Wainwright 02)

wij Fixed



Experiments
Alternative algorithms for approximate 2nd best:

Using approximate marginals from max-product (BMMF; 
Yanover and Weiss 04)

Lawler/Nillson (72,80) - Partition assignments                :

Maximize over each part approximately. Cost O(n)

Our algorithm: STRIPES

x != x(1)

x1 != x(1)
1 x2 = ∗ x3 = ∗ . . . xn = ∗

x1 = x(1)
1 x2 != x(1)

2 x3 = ∗ . . . xn = ∗
...

...
...

...
...

x1 = x(1)
1 x2 = x(1)

2 x3 = x(3)
1 . . . xn != x(n)

1



Attractive Grids
Ising models with ferromagnetic interaction

The local-polytope guaranteed to yield exact first 
best (but not equal to the marginal polytope)

Goal: Find 50 best. Stripes and Nillson find all of 
them exactly. Up to 19 spanning trees added

S N B0

0.5

1

S N B0

50

Stripes Nillson BMMF

0

50

0
Stripes Nillson BMMF

Rank Run Time



Protein Side Chain Prediction

Given protein’s 3D shape (backbone), choose 
most probable side chain configuration

xi!

xk!

xj !

xh!

G=(V,E)!

Protein backbone!

Side-chains!

(MRFs from Yanover, Meltzer, Weiss ‘06)!

Can be cast as a MAP problem

Important to obtain multiple possible solutions

p(x) ∝ e
P

ij∈E θij(xi,xj)



Protein Side Chain Prediction

Stripes found the exact solutions for all problems studied

In some cases, we used a tighter approximation of the 
marginal polytope (Sontag et al, UAI 08)

S N B0

50

S N B0

0.5

1

Stripes Nillson BMMF
0

50

0
Stripes Nillson BMMF
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Open Questions
When are spanning trees enough?

What is the polytope structure for k-best?

Finding k-best “different” solutions

Scalable algorithms

If a given problem is solved with a marginal 
polytope relaxation, what can we say about 
the second best?



Summary
The 2nd best can be posed as a linear program

For trees differs from 1st best by one 
constraint only

For non-trees, approximation can be devised 
by adding inequalities for all spanning trees

Empirically effective


